CSE525 Lec 8: Dynamic Programming

Debajyoti Bera (M21)

Fibonacci Numbers

Q: Design (recursive, as usual) algorithm for computing n-th Fibonacci number. def Fibonacci(int n): // returns n-th Fibonacci number

Q: Estimate running time complexity.
Derive both upper and lower bounds.
Q: Estimate space complexity.

Fibonacci Numbers: Memoization

Design better method using extra space
In the recursion tree of Fibonacci(n) ...

- How many times Fibonacci(n-1) is called?
- How many times Fibonacci(n-2) is called?
- How many times Fibonacci(1) is called?
$\mathrm{R}(\mathrm{n}, \mathrm{a})=$ Number of times Fibonacci(a) is called in the recursion tree of Fibonacci(n)?
Q: Derive a recursive expression along with base case.
Q: Compute R(n,1) = ?
Memoization : Store intermediate values in a cache/lookup-table when they are computed.

Fibonacci Numbers: Dynamic Programming

1. Create the cache/lookup-table using the recurrence
2. Solve the problem using the values of the cache
3. Makes sense when all values of the cache are going to be used

Fib(0) $=1$	Fib(1) $=1$	Fib(2)	Fib(3)	Fib(3)	Fib(4)	Fib(5)	Fib(6)	Fib(7)

Q: Advantage over non-memoized recursive approach? Over memoized approach?

Fibonacci Numbers: Constant-space DP

Computing Fibonacci(n) requires only a table of size 2!

$\operatorname{Fib}(2)=$	$\operatorname{Fib}(0)$	$\operatorname{Fib}(1)$
$\operatorname{Fib}(3)=$	$\operatorname{Fib}(1)$	$\operatorname{Fib}(2)$
$\operatorname{Fib}(4)=$	$\operatorname{Fib}(2)$	$\operatorname{Fib}(3)$
	\ldots	

DP for solving a question Q

1. Specify a problem P (could be different from Q) :

In plain English, the input(s) to the problem and its output(s)
$P(x)$ is "Given input x, compute $\mathrm{Fib}(x)$ "
2. Give a recurrence expression/formula or recursive algorithm for solving P :

Along with base case, in terms of smaller instances of P
$P(0)=1, P(1)=1, P(x)=P(x-1)+P(x-2)$ for $x>1$
3. Prove correctness of recurrence relation by explain an (optimal) substructure property.
$\operatorname{Fib}(\mathrm{x})$ is defined as $\mathrm{Fib}(\mathrm{x}-1)+\mathrm{Fib}(\mathrm{x}-2)$ which are computed by $\mathrm{P}(\mathrm{x}-1), \mathrm{P}(\mathrm{x}-2)$.
4. Describe a memoization structure (need not always be arrays/tables)

For computing $\mathrm{P}(\mathrm{x})$ we use an array $\mathrm{T}[1,2]$.
5. Give an algorithm/ordering for solving P for all values.

Initialize $T[1]=P(0)$ and $T[2]=P(1)$.
For $\mathrm{i}=2 . . . \mathrm{n}$, compute tmp = T[2], T[2] = T[1] + T[2], T[1] = tmp
At i=j T[2] will store P(j)
6. How to solve problem Q from values :
n-th Fibonacci no. = Compute $\mathrm{P}(\mathrm{n})=$ value of $\mathrm{T}[2]$ after step-4.
7. What is space and time complexity for solving problem?

Space complexity $=2$, Time-complexity $=\mathrm{O}(\mathrm{n})$ (assuming $\mathrm{O}(1)$ int. addition)
8. Fer certain preblems, how to-cbtain the optimal-strueture?

Longest Increasing Subsequence of A[1 ... n]

LIS2(j) = length of longest increasing subsequence of A[j ... n] that starts with A[j] (defined for all $j=1$... n)

If for all $k=j+1 \ldots n, A[j]>A[k] \operatorname{LIS} 2(j)=1$
Otherwise, $\operatorname{LIS2}(\mathrm{j})=\max _{\mathrm{k}}\{1+\operatorname{LIS} 2(\mathrm{k})\}$ where max is taken over all k s.t. $\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{k}]$
Q: Give an ordering for computing all values of LIS2(j) for all $\mathrm{j}=1 . . \mathrm{n}$: LIS($\mathrm{j}+1$) ... LIS(n) are sufficient to compute LIS2(j). So LIS2 values can be computed in this order: n, n-1, ... 3,2,1

Q: How to compute longest inc. subseq. of A[1 ... n] using the LIS2(j) values?

1. Use of sentinel $A[0]=-i n f$.
2. Process all LIS2(j) values.

DP for solving a question Q

1. Specify a problem P (could be different from Q) :

Given j, compute LIS2 $(j)=$ length of the longest incr. subseq. in $A[j \ldots n]$ that starts with $A[j]$
2. Give a recurrence expression/formula or recursive algorithm for solving P

LIS2(n)=1.
For $\mathrm{j}<\mathrm{n}, \operatorname{LIS} 2(\mathrm{j})=\max \{1+\operatorname{LIS} 2(\mathrm{k}): \mathrm{k}$ s.t. $\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{k}]\}$. If no such k is there, then LIS2(j)=1.
3. Justify recurrence

Let S be the longest incr. subseq. in $A[j \ldots n]$ starting with $A[j]$. Clearly, $S=A[j]$. T where T is the part after $\mathrm{A}[j]$. T must start with $\mathrm{A}[\mathrm{k}]$ for some $\mathrm{k}>\mathrm{j}$.
Claim: $A[j]<A[k]$. This is since S must be an increasing subseq.
Claim: T must be longest incr. subseq. in $A[k \ldots n]$ that starts with $A[k]$. If T was not the longest, instead there was a longer T^{\prime} that is an incr. subseq. and starts with $A[k]$, then consider $\mathrm{S}^{\prime}=\mathrm{A}[\mathrm{j}]$. T' would be a subsequence by construction and also increasing since $A[j]<A[k]$ (first element of T') and T' itself is increasing. Further, S' would have a longer length than S which contradicts the assumption that S is the longest incr. subseq. in $\mathrm{A}[\mathrm{j} . . \mathrm{n}]$ starting with $\mathrm{A}[\mathrm{j}]$. <End of claim> Therefore, LIS2(j) = 1 (for A[j]) + max_k LIS2(k) where the max is taken over all i s.t. $A[j]<A[i]$. This justifies the recursive formula.
If there is no such k, then $A[j]$ is the only correct subsequence that is increasing and starts with $A[j]$. Hence, LIS2(j)=1 in that case.
3. Describe a memoization structure (need not always be arrays/tables)

1-D array L[0 ... n]. L[i] will store the value of LIS2(i).
4. Give an algorithm/ordering for solving P for all values.

Initialize L[n] = LIS2(n) = 1 .
Define a new sequence $A^{\prime}=(-i n f i n i t y) . A$.
For $j=(n-1) \ldots 0$, compute $\mathrm{L}[\mathrm{j}]=$ LIS2[J] using the recursive formula on the sequence A^{\prime}.
5. How to solve problem Q from values :

LIS of $A=L[0]-1$. This is because LIS of A^{\prime} will always start with $A^{\prime}[0]$ and the rest of that sequence must be the LIS of A .
6. What is space and time complexity for solving problem?

Space complexity $=O(n)$.
Time-complexity $=O\left(n^{2}\right)$ since computing L[j] requires taking the max of at most $(n-j)<=n$ values and there are $O(n)$ entries in L.
7. For certain problems, how to obtain the optimal structure?

To compute the longest sequence itself, along with values also store pointers in L (this can be implemented by storing indexes) that point to other indexes of L. We denote the pointer associated with $L[j]$ as $L[j]$.p. Let $S j$ be the longest incr. subseq. in $A[j . . . n]$ that starts with $A[j]$. Clearly, Sj must start with $\mathrm{A}[\mathrm{j}]$. L[j].p stores the index k s.t. $\mathrm{A}[\mathrm{k}]$ is the next element in S after A[j].

These pointers can be computed while calculating the values in L[].
L[j]. p = NULL when there is no k in $j+1$... n s.t. $A[j]<A[k]$
L[j].p $=\operatorname{argmax}_{k}\{1+\operatorname{LIS} 2(k): k$ s.t. A[j] < A[k]\} otherwise
Finally, to print the LIS of A:
$\mathrm{i}=0$
While (L[i]. pointer != NULL) \{ print A[L[i]. pointer];
i=L[i]. pointer;
\}
This prints all the elements of A as we trace the pointers starting from L[0] until we hit a NULL. Note that $A^{\prime}[0]$ itself is not printed which is the correct behaviour since $A^{\prime}[0]$ is not part of A.

LIS of 3,1,4,1,5,9,2,6

Index j	0	1	2	3	4	5	6	7	8
A[J]	-9999	3	1	4	1	5	9	2	6
LIS2[j]	5	4	4	3	3	2	1	2	1

